

www.salinas-it.de Telefon: 030-25010852

Email: info@salinas-it.de

OSI/ISO-Schichten Modell

- 1984 wurde das >> Reference Model for Open Systems Interconnection << veröffentlicht,- bekannt als das OSI Schichten-Modell
- das Modell verfügt über 7 Schichten
- auf den Schichten wurden einzelne Protokoll-Layer und ihre spezifischen Aufgaben und Funktionen definiert (keine Protokolle an sich!)
- die Schichten sollen eine systemübergreifende Kommunikation zwischen (verschiedenen) Systemen ermöglichen

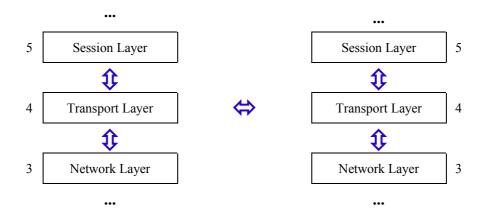
Vorteile des Modells:

- die Darstellung des OSI-Modells erlaubt es, Netzwerkfunktionen separat zu betrachten. Die Netzwerkkommunikation wird in kleinere, einfachere Teile gegliedert, die leichter zu entwickeln und verstehen sind.
- die Unterteilung fördert die Standardisierung von Netzwerkkomponenten, wodurch Netzwerke mit Technologien unterschiedlicher Anbieter entwickelt und unterstützt werden können.
- Änderungen in einer Schicht beeinträchtigen nicht die anderen Schichten

Die 7 Layer / Schichten (englisch / deutsch):

7	Application Layer	Anwendungsschicht
6	Presentation Layer	Darstellungsschicht
5	Session Layer	Sitzungsschicht
4	Transport Layer	Transportschicht
3	Network Layer	Netzwerksschicht
2	Data Link Layer	Sicherungsschicht
1	Physical Layer	Physikalische Schicht

Die oberen Schichten 5-7 lassen sich aufgrund Ihrer Aufgaben unter dem Begriff "Anwendungsschichten" zusammenfassen. Die unteren Schichten werden als Transportschichten bezeichnet.

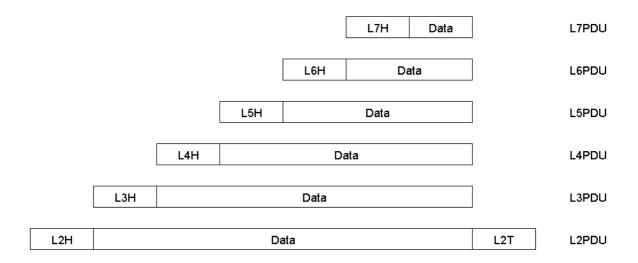

Funktionen der Schichten im Kurzüberblick:

	Schicht	Funktion	Protokolle
7	Application	Anwendung	www, telnet
6	Presentation	Für die Darstellung verantwortlich, sowie	jpg, mp3, wav
		Kompression, Verschlüsselung usw.	
5	Session	Auf- und Abbau von Sessions	NFS,
			Operating System
4	Transport	Flusskontrolle, verbindungsorientierter und	TCP, UDP
		verbindungsloser Transport	
3	Network	Logische Adressierung; Pfadbestimmung	IP, IPX, RIP
2	Data Link	Media Access, Error detection, Umwandlung	LLC, MAC
		Frames → Bits oder umgekehrt	
1	Physical	Bit-Übertragung; Verantwortlich für	V35, EIA/TIA-232
	Layer	Definition elektrischer Signale,	
		Geschwindigkeit etc.	

Kommunikation zwischen den Schichten:

Die Kommunikation zwischen den einzelnen Schichten erfolgt vertikal und horizontal, d.h. zum Einen kommuniziert eine Schicht mit der über- bzw. darunter liegenden Schicht und zum Anderen mit der Schicht des gegenüber liegenden Kommunikationssystems.

Die Darstellung zeigt den Kommunikationsfluss anhand der Transportschicht:

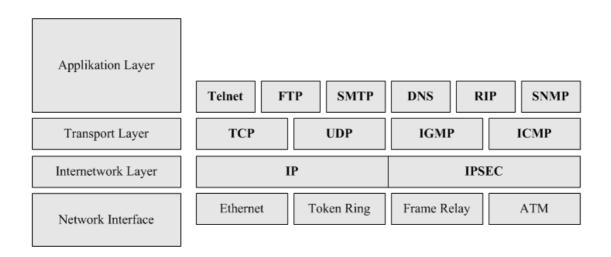

PDU's (Protocol Data Unit's):

Die Protokolle der einzelnen Layer werden im allgemeinen auch als PDUs bezeichnet, denn jede Schicht enthält aufgrund der verschiedenen Aufgabenstellungen die es auf der Schicht zu erfüllen hat, sein "eigenes Datenformat".

7	Anwendungsschicht	
6	Darstellungsschicht	Daten
5	Sitzungsschicht	
4	Transportschicht	Segmente
3	Netzwerksschicht	Pakete
2	Sicherungsschicht	Frames
1	Physikalische Schicht	Bits

Encapsulation:

- 1. Der Datenstrom wird durch die einzelnen Schichten durchgereicht und für die nächst folgende Schicht zur Weiterverarbeitung vorbereitet.
- 2. Hierzu wird den Daten jeweils ein "Header" vorangestellt. In jeder Schicht kommt ein neuer Header hinzu.
- 3. In der Sicherungsschicht (2) kommt zum Abschluss des Frames ein Trailer hinzu.



TCP/IP Modell

Das TCP/IP-Modell besteht im Gegensatz zum OSI-Modell aus nur 4 Schichten. Es stellt im Vergleich zum OSI-Modell das ältere Modell dar.

4	Application Layer
3	Transport Layer
2	Internetwork Layer
1	Network Interface

TCP/IP Dienste im TCP/IP Modell:

OSI- und TCP/IP-Modell im Vergleich:

7	Application Layer			
6	Presentation Layer	\Leftrightarrow	Application Layer	4
5	Session Layer			
4	Transport Layer	\Leftrightarrow	Transport Layer	3
3	Network Layer	\Leftrightarrow	Internetwork Layer	2
2	Data Link Layer		Notavarla Interfoce	1
1	Physical Layer	\Leftrightarrow	Network Interface	1